17 resultados para ECM

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic lung diseases (CLDs) are a considerable source of morbidity and mortality and are thought to arise from dysregulation of normal wound healing processes. An aggressive, feature of many CLDs is pulmonary fibrosis (PF) and is characterized by excess deposition of extracellular matrix (ECM) proteins from myofibroblasts in airways. However, factors regulating myofibroblast biology are incompletely understood. Proteins in the cadherin family contribute epithelial to mesenchymal transition (EMT), a suggested source of myofibroblasts. Cadherin 11 (CDH11) contributes to developmental and pathologic processes that parallel those seen in PF and EMT. Utilizing Cdh11 knockout (Cdh11 -/-) mice, the goal of this study was to characterize the contribution of CDH11 in the bleomycin model of PF and assess the feasibility of treating established PF. We demonstrate CDH11 in macrophages and airway epithelial cells undergoing EMT in lungs of mice given bleomycin and patients with PF. Endpoints consistent with PF including ECM production and myofibroblast formation are reduced in CDH11-targeted mice given bleomycin. Findings suggesting mechanisms of CDH11-dependent fibrosis include the regulation of the profibrotic mediator TGF-â in alveolar macrophages and CDH11-mediated EMT. The results of this study propose CDH11 as a novel drug target for PF. In addition, another CLD, chronic obstructive pulmonary disease (COPD), is characterized by airway inflammation and destruction. Adenosine, a nucleoside signaling molecule generated in response to cell stress is upregulated in patients with COPD and is suggested to contribute to its pathogenesis. An established model of adenosine-mediated lung injury exhibiting features of COPD is the Ada -/- mouse. Previous studies in our lab suggest features of the Ada -/- phenotype may be secondary to adenosine-dependent expression of osteopontin (OPN). OPN is a protein implicated in a variety of human pathology, but its role in COPD has not been examined. To address this, Ada/Opn -/- mice were generated and endpoints consistent with COPD were examined in parallel with Ada -/- mice. Results demonstrate OPN-mediated pulmonary neutrophilia and airway destruction in Ada -/- mice. Furthermore, patients with COPD exhibit increased OPN in airways which correlate with clinical airway obstruction. These results suggest OPN represents a novel biomarker or therapeutic target for the management of patients with COPD. The importance of findings in this thesis is highlighted by the fact that no pharmacologic interventions have been shown to interfere with disease progression or improve survival rates in patients with COPD or PF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurogenesis in the adult mouse brain occurs within the subventricular zone (SVZ) of the lateral ventricle. In the SVZ, neural stem cells (NSC) reside in a specialized microenvironment, or vascular niche, consisting of blood vessels and their basement membranes. Most NSCs in the SVZ differentiate into progenitor cells, which further differentiate to generate neuroblasts, which then migrate from the SVZ to the olfactory bulbs (OB) along the rostral migratory stream (RMS). ECM-mediated adhesion and signaling within the vascular niche likely contribute to proper NSC self-renewal, survival, differentiation and neuroblast motility. The mechanisms that control these events are poorly understood. Previous studies from our group and others have shown that loss of the ECM receptor, αvβ8 integrin, in NSCs in the embryonic mouse brain leads to severe developmental vascular defects and premature death. Here, the functions of αvβ8 integrin in the adult brain have been examined using mice that have been genetically manipulated to lack a functional β8 integrin gene. This study reveals that loss of β8 integrin leads to widespread defects in homeostasis of the neurovascular unit, including increased intracerebral blood vessels with enhanced perivascular astrogliosis. Additionally, β8 integrin dependent defects in NSC proliferation, survival, and differentiation, as well as neuroblast migration in the RMS were observed both in vivo and in vitro. The defects correlated, in part, with diminished integrin-mediated activation of TGFβ, an ECM ligand of β8 integrin. Collectively, these data identify important adhesion and signaling functions for β8 integrin in the regulation of neural stem and progenitor cells in the SVZ as well as in neuroblast migration along the RMS in the adult brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Band 4.1B is a cytoskeletal adaptor protein that regulates various cellular behavior; however, the mechanisms by which Band 4.1B contributes to intracellular signaling are unclear. This project addresses in vivo and in vitro functions for Band 4.1B in integrin-mediated cell adhesion and signaling. Band 4.1B has been shown to bind to β8 integrin, although cooperative functions of these two proteins have not been determined. Here, functional links between β8 integrin and Band 4.1B were investigated using gene knockout strategies. Ablation of β8 integrin and Band 4.1B genes resulted in impaired cardiac morphogenesis, leading to embryonic lethality by E11.5. These embryos displayed malformation of the outflow tract that was likely linked to abnormal regulation of cardiac neural crest migration. These data indicate the importance of cooperative signaling between β8 integrin and Band 4.1B in cardiac development. The involvement of Band 4.1B in integrin-mediated cell adhesion and signaling was further demonstrated by studying its functional roles in vitro. Band 4.1B is highly expressed in the brain, but its signaling in astrocytes is not understood. Here, Band 4.1B was shown to promote cell spreading likely by interacting with β1 integrin via its band 4.1, ezrin, radixin, and moesin (FERM) domain in cell adhesions. In astrocytes, both Band 4.1B and β1 integrin were expressed in cell-ECM contact sites during early cell spreading. Exogenous expression of Band 4.1B, especially its FERM domain, enhanced cell spreading on fibronectin, an ECM ligand for β1 integrin. However, the increased cell spreading was prohibited by blocking β1 integrin. These findings suggest that Band 4.1B is crucial for early adhesion assembly and/or signaling that are mediated by β1 integrin. Collectively, this study was the first to establish Band 4.1B as a modulator of integrin-mediated adhesion and signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Most previous studies have found that Enterococcus faecalis isolates do not show significant adherence to fibronectin and fibrinogen. METHODS: The influence of various conditions on E. faecalis adherence to extracellular matrix (ECM) proteins was evaluated using a radiolabeled-cell adherence assay. RESULTS: Among the conditions studied, growth in 40% horse serum (a biological cue with potential clinical relevance) elicited adherence of all 46 E. faecalis strains tested to fibronectin and fibrinogen but not to elastin; adherence levels were independent of strain source, and adherence was eliminated by treating cells with trypsin. As previously reported, serum also elicited adherence to collagen. Although prolonged exposure to serum during growth was needed for enhancement of adherence to fibrinogen, brief exposure (<5 >min) to serum had an immediate, although partial, enhancing effect on adherence to fibronectin and, to a lesser extent, collagen; pretreatment of bacteria with chloramphenicol did not decrease this enhanced adherence to fibronectin and collagen, indicating that protein synthesis is not required for the latter effect. CONCLUSION: Taken together, these data suggest that serum components may serve (1) as host environmental stimuli to induce the production of ECM protein-binding adhesin(s), as previously seen with collagen adherence, and also (2) as activators of adherence, perhaps by forming bridges between ECM proteins and adhesins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammation is a key process in cardiovascular diseases. The extracellular matrix (ECM) of the vasculature is a major target of inflammatory cytokines, and TNFalpha regulates ECM metabolism by affecting collagen production. In this study, we have examined the pathways mediating TNFalpha-induced suppression of prolyl-4 hydroxylase alpha1 (P4Halpha1), the rate-limiting isoform of P4H responsible for procollagen hydroxylation, maturation, and organization. Using human aortic smooth muscle cells, we found that TNFalpha activated the MKK4-JNK1 pathway, which induced histone (H) 4 lysine 12 acetylation within the TNFalpha response element in the P4Halpha1 promoter. The acetylated-H4 then recruited a transcription factor, NonO, which, in turn, recruited HDACs and induced H3 lysine 9 deacetylation, thereby inhibiting transcription of the P4Halpha1 promoter. Furthermore, we found that TNFalpha oxidized DJ-1, which may be essential for the NonO-P4Halpha1 interaction because treatment with gene specific siRNA to knockout DJ-1 eliminated the TNFalpha-induced NonO-P4Halpha1 interaction and its suppression. Our findings may be relevant to aortic aneurysm and dissection and the stability of the fibrous cap of atherosclerotic plaque in which collagen metabolism is important in arterial remodeling. Defining this cytokine-mediated regulatory pathway may provide novel molecular targets for therapeutic intervention in preventing plaque rupture and acute coronary occlusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic cancer is one of the most lethal type of cancer due to its high metastasis rate and resistance to chemotherapy. Pancreatic fibrosis is a constant pathological feature of chronic pancreatitis and the hyperactive stroma associated with pancreatic cancer. Strong evidence supports an important role of cyclooxygenase-2 (COX-2) and COX-2 generated prostaglandin E2 (PGE2) during pancreatic fibrosis. Pancreatic stellate cells (PSC) are the predominant source of extracellular matrix production (ECM), thus being the key players in both diseases. Given this background, the primary objective is to delineate the role of PGE2 on human pancreatic stellate cells (PSC) hyper activation associated with pancreatic cancer. This study showed that human PSC cells express COX-2 and synthesize high levels of PGE2. PGE2 stimulated PSC migration and invasion; expression of extra cellular matrix (ECM) genes and tissue degrading matrix metallo proteinases (MMP) genes. I further identified the PGE2 EP receptor responsible for mediating these effects on PSC. Using genetic and pharmacological approaches I identified the receptor required for PGE2 mediates PSC hyper activation. Treating PSC with Specific antagonists against EP1, EP2 and EP4, demonstrated that blocking EP4 receptor only, resulted in a complete reduction of PGE2 mediated PSC activation. Furthermore, siRNA mediated silencing of EP4, but not other EP receptors, blocked the effects of PGE2 on PSC fibrogenic activity. Further examination of the downstream pathway modulators revealed that PGE2 stimulation of PSC involved CREB and not AKT pathway. The regulation of PSC by PGE2 was further investigated at the molecular level, with a focus on COL1A1. Collagen I deposition by PSC is one of the most important events in pancreatic cancer. I found that PGE2 regulates PSC through activation of COL1A1 expression and transcriptional activity. Downstream of PGE2, silencing of EP4 receptor caused a complete reduction of COL1A1 expression and activity supporting the role of EP4 mediated stimulation of PSC. Taken together, this data indicate that PGE2 regulates PSC via EP4 and suggest that EP4 can be a better therapeutic target for pancreatic cancer to reduce the extensive stromal reaction, possibly in combination with chemotherapeutic drugs can further kill pancreatic cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the identification and characterization of human dermatan sulfate proteoglycan 3 (DSPG3) and the characterization of the transcriptional regulation of human cartilage oligomeric matrix protein (COMP) in cartilage, ligament, and tendon cells. DSPG3 and COMP are two extracellular matrix proteins. The function of these ECM proteins is unknown.^ DSPG3 was cloned, sequenced, and shown to be expressed in cartilage, ligament, and placenta. DSPG3 was mapped to human chromosome 12q21, and the genomic structure was identified. 1.6 kb of the promoter region has been sequenced, and several putative SOX9 sites were identified as well as 3 TATA sites. Furthermore, an evolutionary tree of the SLRP gene family, which includes DSPG3, is presented.^ The promoter region of COMP was cloned and sequenced. Several putative transcription factor binding sites were identified including multiple AP2 and SP1 sites. Three transcription start sites were found to be located directly downstream of one of the SP1 sites. In addition, the expression of COMP was demonstrated to be higher in tendon than in cartilage and ligament by both Northern and Western blot analysis, and several regions of the COMP promoter were shown to contain cell-specific regulatory elements. Analysis of the proximal 370bp region of the COMP promoter has also identified distinct patterns of nuclear protein binding for the three tissues, and two SP1 sites may play a role in the tissue-specific expression of COMP. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular matrix (ECM) is a component of a variety of organisms that provides both structural support and influence upon the cells it surrounds. The importance of the ECM is becoming more apparent as matrix defects are linked to human disease. In this study, the large, extracellular matrix heparan sulfate proteoglycan, perlecan (Pln) is examined in two systems. First, the role of Pln in the interaction between a blastocyst and uterine epithelial cells is investigated. In mice, blastocyst attachment and implantation occurs at approximately d 4.5 post coitus. In addition, a delayed implantation model has been used to distinguish between the response of the blastocyst to that of hatching and of becoming attachment competent. ^ The second series of experiments described in this study focuses on the process of chondrogenesis in mice. Pln, commonly expressed with other basement membrane (BM) proteins, was found to be expressed in cartilaginous tissue without other BM proteins. This unusual expression pattern led to further study and the development of an in vitro chondrogenesis assay using the mouse embryonic fibroblast cell line, C3H/10T1/2. When cultured on Pln in vitro, these cells form aggregates and express the cartilage proteins, collagen type II and aggrecan. In examining the participation of the heparan sulfate (HS) chains in this process, the proteoglycan was enzymatically digested to remove the HS chains before the initiation of 10T1/2 cell culture. After digestion, the ability of Pln to stimulate aggregate formation was greatly diminished. Thus, the HS chains participate in the cell induction process. To determine which domain of Pln might be responsible for this activity, recombinant fragments of Pin were used in the cell culture assay. Of all recombinant protein fragments tested, only the domain including the HS chains, domain 1, was able to initiate the morphological change exhibited by the 10T1/2 cells. Similar to native Pln, when HS chains were removed from domain I, chondrogenic activity was abolished. A variant of domain I carrying both HS and chondroitin sulfate (CS) chains retained activity when only HS chains were removed. When both HS and CS chains were removed, then activity was lost. ^ The ability to rapidly stimulate differentiation of 10T1/2 cells in vitro may lead to better control of chondrogenesis in vitro and in vivo, providing better understanding and manipulation of the chondrogenic process. This greater understanding may have benefits for study of cartilage and bone diseases and subsequent treatment options. (Abstract shortened by UMI.)^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of male cancer-related deaths in the United States. Interestingly, prostate cancer preferentially metastasizes to skeletal tissue. Once in the bone microenvironment, advanced prostate cancer becomes highly resistant to therapeutic modalities. Several factors, such as extracellular matrix (ECM) components, have been implicated in the spread and propagation of prostatic carcinoma. In these studies, we have utilized the PC3 cell line, derived from a human bone metastasis, to investigate the influence of the predominant bone ECM protein, type I collagen, on prostate cancer cell proliferation and gene expression. We have also initiated the design and production of ribozymes to specific gene targets that may influence prostate cancer bone metastasis. ^ Our results demonstrate that PC3 cells rapidly adhere and spread on collagen I to a greater degree than on fibronectin (FN) or poly-L-lysine (PLL). Flow cytometry analysis reveals the presence of the α1, α2 and α3 collagen binding integrin subunits. The use of antibody function blocking studies reveals that PC3 cells can utilize α2β 1 and α3β1 integrins to adhere to collagen I. Once plated on collagen I, the cells exhibit increased rates of proliferation compared with cells plated on FN or tissue culture plastic. Additionally, cells plated on collagen I show increased expression of proteins associated with progression through G1 phase of the cell cycle. Inhibitor studies point to a role for phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and p70 S6 kinase in collagen I-mediated PC3 cell proliferation and cyclin D1 expression. To further characterize the effect of type I collagen on prostate cancer bone metastasis, we utilized a cDNA microarray strategy to monitor type I collagen-mediated changes in gene expression. Results of this analysis revealed a gene expression profile reflecting the increased proliferation occurring on type I collagen. Microarray analysis also revealed differences in the expression of specific gene targets that may impact on prostate cancer metastasis to bone. ^ As a result of our studies on the interaction of prostate cancer cells and the skeletal ECM, we sought to develop novel molecular tools for future gene therapy of functional knockdown experiments. To this end, we developed a series of ribozymes directed against the α2 integrin and at osteopontin, a protein implicated in the metastasis of various cancers, including prostate. These ribozymes should facilitate the future study of the mechanism of prostate cancer cell proliferation, and disease progression occurring at sites of skeletal metastasis where a type I collagen-based environment predominates. ^ Together these studies demonstrate the involvement of bone ECM proteins on prostate cancer cell proliferation and suggest that they may play a significant role on the growth of prostate metastases once in the bone microenvironment. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several congenital syndromes associated with anterior segment (AS) anomalies can lead to impaired vision and glaucoma, such as nail-patella syndrome (NPS), caused by mutations in the LIM homeodomain transcription factor LMX1B and Axenfeld-Rieger's syndrome (ARS), caused by mutations in the bicoid-related homeodomain transcription factor PITX2. Targeted mutations in lmx1b and pitx2 and RNA in situ analysis reveal that both genes are required for AS development and are co-expressed within the periocular mesenchyme, suggesting they participate in a shared genetic pathway. Lmx1b homozygous mutants display iris and corneal stroma hypoplasia, and defects in ciliary body formation. In contrast, pitx2 homozygous mutants exhibit a more severe phenotype: the AS chamber, corneal endothelium, and extraocular muscles (EOM) fail to develop. The absence of EOM in pitx2 mutants suggests pitx2 acts upstream of lmx1b, or that other lmx1b family members, such as lmx1a, can compensate for lmx1b function. Lmxla/lmx1b double homozygous mutants have a reduced capacity to generate EOM, implying that lmx1 gene products have a redundant function in EOM development and that lmx1 family members may act downstream of pitx2. However, analysis of pitx2 expression in the AS tissues of lmx1b mutants and reciprocal studies of lmx1b expression in pitx2 mutants indicate that these genes do not function in a simple linear pathway. Instead, lmx1b and pitx2 may regulate a shared set of downstream targets or both genes may work in parallel transcribing unique targets required for a common biological process. Ultrastructural analysis of lmx1b and pitx2 mutant corneas indicates that collagen fibrillogenesis is perturbed, revealing a common role for both genes in the deposition of extracellular matrix. Furthermore, lmx1b/pitx2 double heterozygotes develop corneal opacities not observed in single heterozygotes demonstrating that lmx1b and pitx2 genetically interact. Data suggests that defects in the basement membrane of the corneal endothelium underlie the opacities observed in double heterozygotes. Additionally, double heterozygotes develop anterior synechias that occlude the trabecular meshwork, potentially blocking aqueous humor drainage. These data suggest that lmx1b and pitx2 are responsible for ECM deposition in multiple cell types and imply that such defects may contribute to the glaucomas observed in NPS and ARS patients. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thoracic aortic aneurysms leading to aortic dissections (TAAD) are a major cause of morbidity and mortality in the United States. TAAD is a complication of some known genetic disorders, such as Marfan syndrome and Turner syndrome, but the majority of familial cases are not due to a known genetic syndrome. Previous studies by our group have established that nonsyndromic, familial TAAD is inherited in an autosomal dominant manner with decreased penetrance and variable expression. Using one large family with multiple members with TAAD for the genome wide scan, a major locus for familial TAAD was mapped to 5q13–14 (TAAD1). Nine out of 15 families studied were linked to this locus, establishing that TAAD1 was a major locus, and that there was genetic heterogeneity for the condition. Mapping of TAAD2 locus was accomplished using a single large family with multiple members with TAAD not linked to known loci of aneurysm formation. This established a second novel locus for familial TAAD on 3p24–25 (LOD score of 4.3), termed the TAAD2 locus. Two putative loci with suggestive LOD scores were mapped on 4q and 12q through a genome scan carried out using three families. TAAD phenotype in 12 families did not segregate with known loci, indicating further genetic heterogeneity. An STS-tagged BAC based contig was constructed for 7.8Mb and 25Mb critical interval of TAAD1 and TAAD2 respectively and characterized to identify the defective gene. The hypothesis that the defective genes responsible for the TAAD1 and TAAD2 encoded extracellular matrix (ECM) proteins, the major components of the elastic fiber system in the aortic media was tested. Four genes encoding ECM proteins, versican, thrombospondin-3, CRTL1, on TAAD1 and FBLN2 at TAAD2 were sequenced, but no disease-causing mutations were identified. Studies to identify the defective gene are initiated through the positional candidate gene approach using combination of bioinformatics and expression studies. The identification of the TAAD susceptibility genes will allow for presymptomatic diagnosis of individuals at risk for this life threatening disease. The identification of the molecular defects that contribute to TAAD will also further our understanding of the proteins that provide structural integrity to the aortic wall. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. This project was designed to describe the association between wasting and CD4 cell counts in HIV-infected men in order to better understand the role of wasting in progression of HIV infection.^ Methods. Baseline and prevalence data were collected from a cross-sectional survey of 278 HIV-infected men seen at the Houston Veterans Affairs Medical Center Special Medicine Clinic, from June 1, 1991 to January 1, 1994. A follow-up study was conducted among those at risk, to investigate the incidence of wasting and the association between wasting and low CD4 cell counts. Wasting was described by four methods. Z-scores for age-, sex-, and height-adjusted weight; sex-, and age-adjusted mid-arm muscle circumference (MAMC); and fat-free mass; and the ratio of extra-cellular mass (ECM) to body-cell mass (BCM) $>$ 1.20. FFM, ECM, and BCM were estimated from bioelectrical impedance analysis. MAMC was calculated from triceps skinfold and mid-arm circumference. The relationship between wasting and covariates was examined with logistic regression in the cross-sectional study, and with Poisson regression in the follow-up study. The association between death and wasting was examined with Cox's regression.^ Results. The prevalence of wasting ranged from 5% (weight and ECM:BCM) to almost 14% (MAMC and FFM) among the 278 men examined. The odds of wasting, associated with baseline CD4 cell count $<$200, was significant for each method but weight, and ranged from 4.6 to 12.7. Use of antiviral therapy was significantly protective of MAMC, FFM and ECM:BCM (OR $\approx$ 0.2), whereas the need for antibacterial therapy was a risk (OR 3.1, 95% CI 1.1-8.7). The average incidence of wasting ranged from 4 to 16 per 100 person-years among the approximately 145 men followed for 160 person-years. Low CD4 cell count seemed to increase the risk of wasting, but statistical significance was not reached. The effect of the small sample size on the power to detect a significant association should be considered. Wasting, by MAMC and FFM, was significantly associated with death, after adjusting for baseline serum albumin concentration and CD4 cell count.^ Conclusions. Wasting by MAMC and FFM were strongly associated with baseline CD4 cell counts in both the prevalence and incidence study and strong predictors of death. Of the two methods, MAMC is convenient, has available reference population data, may be the most appropriate for assessing the nutritional status of HIV-infected men. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ECM of epithelial carcinomas undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How tumors maintain ECM integrity in the face of dynamic biophysical forces is still largely unclear. This study addresses these deficiencies using mouse models of human lung adenocarcinoma. Spontaneous lung tumors were marked by disorganized basement membranes, dense collagen networks, and increased tissue stiffness. Metastasis-prone lung adenocarcinoma cells secreted fibulin-2 (Fbln2), a matrix glycoprotein involved in ECM supra-molecular assembly. Fibulin-2 depletion in tumor cells decreased the intra-tumoral abundance of matrix metalloproteinases and reduced collagen cross-linking and tumor compressive properties resulting in inhibited tumor growth and metastasis. Fbln2 deposition within intra-tumoral fibrotic bands was a predictor of poor clinical outcome in patients. Collectively, these findings support a feed-forward model in which tumor cells secrete matrix-stabilizing factors required for the assembly of ECM that preferentially favors malignant progression. To our knowledge, this is the first evidence that tumor cells directly regulate the integrity of their surrounding matrix through the secretion of matrix-stabilizing factors such as fibulin-2. These findings open a new avenue of research into matrix assembly molecules as potential therapeutic targets in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decorin, a dermatan/chondroitin sulfate proteoglycan, is ubiquitously distributed in the extracellular matrix (ECM) of mammals. Decorin belongs to the small leucine rich proteoglycan (SLRP) family, a proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. The decorin core protein appears to mediate the binding of decorin to ECM molecules, such as collagens and fibronectin. It is believed that the interactions of decorin with these ECM molecules contribute to the regulation of ECM assembly, cell adhesions, and cell proliferation. These basic biological processes play critical roles during embryonic development and wound healing and are altered in pathological conditions such as fibrosis and tumorgenesis. ^ In this dissertation, we discover that decorin core protein can bind to Zn2+ ions with high affinity. Zinc is an essential trace element in mammals. Zn2+ ions play a catalytic role in the activation of many enzymes and a structural role in the stabilization of protein conformation. By examining purified recombinant decorin and its core protein fragments for Zn2+ binding activity using Zn2+-chelating column chromatography and Zn2+-equilibrium dialysis approaches, we have located the Zn2+ binding domain to the N-terminal sequence of the decorin core protein. The decorin N-terminal domain appears to contain two Zn2+ binding sites with similar high binding affinity. The sequence of the decorin N-terminal domain does not resemble any other reported zinc-binding motifs and, therefore, represents a novel Zn 2+ binding motif. By investigating the influence of Zn2+ ions on decorin binding interactions, we found a novel Zn2+ dependent interaction with fibrinogen, the major plasma protein in blood clots. Furthermore, a recombinant peptide (MD4) consisting of a 41 amino acid sequence of mouse decorin N-terminal domain can prolong thrombin induced fibrinogen/fibrin clot formation. This suggests that in the presence of Zn2+ the decorin N-terminal domain has an anticoagulation activity. The changed Zn2+-binding activities of the truncated MD4 peptides and site-directed mutagenesis generated mutant peptides revealed that the functional MD4 peptide might contain both a structural zinc-binding site in the cysteine cluster region and a catalytic zinc site that could be created by the flanking sequences of the cysteine cluster region. A model of a loop-like structure for MD4 peptide is proposed. ^